Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 361, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521889

RESUMEN

Myosin II is the muscle molecular motor that works in two bipolar arrays in each thick filament of the striated (skeletal and cardiac) muscle, converting the chemical energy into steady force and shortening by cyclic ATP-driven interactions with the nearby actin filaments. Different isoforms of the myosin motor in the skeletal muscles account for the different functional requirements of the slow muscles (primarily responsible for the posture) and fast muscles (responsible for voluntary movements). To clarify the molecular basis of the differences, here the isoform-dependent mechanokinetic parameters underpinning the force of slow and fast muscles are defined with a unidimensional synthetic nanomachine powered by pure myosin isoforms from either slow or fast rabbit skeletal muscle. Data fitting with a stochastic model provides a self-consistent estimate of all the mechanokinetic properties of the motor ensemble including the motor force, the fraction of actin-attached motors and the rate of transition through the attachment-detachment cycle. The achievements in this paper set the stage for any future study on the emergent mechanokinetic properties of an ensemble of myosin molecules either engineered or purified from mutant animal models or human biopsies.


Asunto(s)
Contracción Muscular , Sarcómeros , Animales , Humanos , Conejos , Contracción Muscular/fisiología , Miosinas , Músculo Esquelético/fisiología , Isoformas de Proteínas/química
2.
Am J Physiol Cell Physiol ; 326(2): C632-C644, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38145303

RESUMEN

The medaka fish (Oryzias latipes) is a vertebrate model used in developmental biology and genetics. Here we explore its suitability as a model for investigating the molecular mechanisms of human myopathies caused by mutations in sarcomeric proteins. To this end, the relevant mechanical parameters of the intact skeletal muscle of wild-type medaka are determined using the transparent tail at larval stage 40. Tails were mounted at sarcomere length of 2.1 µm in a thermoregulated trough containing physiological solution. Tetanic contractions were elicited at physiological temperature (10°C-30°C) by electrical stimulation, and sarcomere length changes were recorded with nanometer-microsecond resolution during both isometric and isotonic contractions with a striation follower. The force output has been normalized for the actual fraction of the cross section of the tail occupied by the myofilament lattice, as established with transmission electron microscopy (TEM), and then for the actual density of myofilaments, as established with X-ray diffraction. Under these conditions, the mechanical performance of the contracting muscle of the wild-type larva can be defined at the level of the half-thick filament, where ∼300 myosin motors work in parallel as a collective motor, allowing a detailed comparison with the established performance of the skeletal muscle of different vertebrates. The results of this study point out that the medaka fish larva is a suitable model for the investigation of the genotype/phenotype correlations and therapeutic possibilities in skeletal muscle diseases caused by mutations in sarcomeric proteins.NEW & NOTEWORTHY The suitability of the medaka fish as a model for investigating the molecular mechanisms of human myopathies caused by mutations of sarcomeric proteins is tested by combining structural analysis and sarcomere-level mechanics of the skeletal muscle of the tail of medaka larva. The mechanical performance of the medaka muscle, scaled at the level of the myosin-containing thick filament, together with its reduced genome duplication makes this model unique for investigations of the genotype/phenotype correlations in human myopathies.


Asunto(s)
Enfermedades Musculares , Oryzias , Animales , Humanos , Sarcómeros/metabolismo , Oryzias/metabolismo , Larva/metabolismo , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología
3.
J Gen Physiol ; 155(12)2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37756601

RESUMEN

Contraction of skeletal muscle is triggered by an increase in intracellular calcium concentration that relieves the structural block on actin-binding sites in resting muscle, potentially allowing myosin motors to bind and generate force. However, most myosin motors are not available for actin binding because they are stabilized in folded helical tracks on the surface of myosin-containing thick filaments. High-force contraction depends on the release of the folded motors, which can be triggered by stress in the thick filament backbone, but additional mechanisms may link the activation of the thick filaments to that of the thin filaments or to intracellular calcium concentration. Here, we used x-ray diffraction in combination with temperature-jump activation to determine the steady-state calcium dependence of thick filament structure and myosin motor conformation in near-physiological conditions. We found that x-ray signals associated with the perpendicular motors characteristic of isometric force generation had almost the same calcium sensitivity as force, but x-ray signals associated with perturbations in the folded myosin helix had a much higher calcium sensitivity. Moreover, a new population of myosin motors with a longer axial periodicity became prominent at low levels of calcium activation and may represent an intermediate regulatory state of the myosin motors in the physiological pathway of filament activation.


Asunto(s)
Actinas , Calcio , Calcio/metabolismo , Actinas/metabolismo , Músculo Esquelético/metabolismo , Citoesqueleto de Actina/metabolismo , Miosinas/metabolismo , Contracción Muscular/fisiología
4.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569700

RESUMEN

The mechanical performances of the vertebrate skeletal muscle during isometric and isotonic contractions are interfaced with the corresponding energy consumptions to define the coupling between mechanical and biochemical steps in the myosin-actin energy transduction cycle. The analysis is extended to a simplified synthetic nanomachine in which eight HMM molecules purified from fast mammalian skeletal muscle are brought to interact with an actin filament in the presence of 2 mM ATP, to assess the emergent properties of a minimum number of motors working in ensemble without the effects of both the higher hierarchical levels of striated muscle organization and other sarcomeric, regulatory and cytoskeleton proteins. A three-state model of myosin-actin interaction is able to predict the known relationships between energetics and transient and steady-state mechanical properties of fast skeletal muscle either in vivo or in vitro only under the assumption that during shortening a myosin motor can interact with two actin sites during one ATP hydrolysis cycle. Implementation of the molecular details of the model should be achieved by exploiting kinetic and structural constraints present in the transients elicited by stepwise perturbations in length or force superimposed on the isometric contraction.

5.
Proc Natl Acad Sci U S A ; 120(9): e2219346120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812205

RESUMEN

Titin is a molecular spring in parallel with myosin motors in each muscle half-sarcomere, responsible for passive force development at sarcomere length (SL) above the physiological range (>2.7 µm). The role of titin at physiological SL is unclear and is investigated here in single intact muscle cells of the frog (Rana esculenta), by combining half-sarcomere mechanics and synchrotron X-ray diffraction in the presence of 20 µM para-nitro-blebbistatin, which abolishes the activity of myosin motors and maintains them in the resting state even during activation of the cell by electrical stimulation. We show that, during cell activation at physiological SL, titin in the I-band switches from an SL-dependent extensible spring (OFF-state) to an SL-independent rectifier (ON-state) that allows free shortening while resisting stretch with an effective stiffness of ~3 pN nm-1 per half-thick filament. In this way, I-band titin efficiently transmits any load increase to the myosin filament in the A-band. Small-angle X-ray diffraction signals reveal that, with I-band titin ON, the periodic interactions of A-band titin with myosin motors alter their resting disposition in a load-dependent manner, biasing the azimuthal orientation of the motors toward actin. This work sets the stage for future investigations on scaffold and mechanosensing-based signaling functions of titin in health and disease.


Asunto(s)
Citoesqueleto de Actina , Músculo Esquelético , Conectina , Músculo Esquelético/fisiología , Sarcómeros/fisiología , Miosinas/fisiología , Contracción Muscular
6.
Commun Biol ; 5(1): 1266, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400920

RESUMEN

Contraction of striated muscle is regulated by a dual mechanism involving both thin, actin-containing filament and thick, myosin-containing filament. Thin filament is activated by Ca2+ binding to troponin, leading to tropomyosin displacement that exposes actin sites for interaction with myosin motors, extending from the neighbouring stress-activated thick filaments. Motor attachment to actin contributes to spreading activation along the thin filament, through a cooperative mechanism, still unclear, that determines the slope of the sigmoidal relation between isometric force and pCa (-log[Ca2+]), estimated by Hill coefficient nH. We use sarcomere-level mechanics in demembranated fibres of rabbit skeletal muscle activated by Ca2+ at different temperatures (12-35 °C) to show that nH depends on the motor force at constant number of attached motors. The definition of the role of motor force provides fundamental constraints for modelling the dynamics of thin filament activation and defining the action of small molecules as possible therapeutic tools.


Asunto(s)
Actinas , Sarcómeros , Animales , Conejos , Sarcómeros/metabolismo , Actinas/metabolismo , Contracción Muscular/fisiología , Calcio/metabolismo , Miosinas/metabolismo , Músculo Esquelético/metabolismo
7.
Nanomaterials (Basel) ; 12(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35214956

RESUMEN

Cellulases are enzymes with great potential for converting biomass to biofuels for sustainable energy. However, their commercial use is limited by their costs and low reusability. Therefore, the scientific and industrial sectors are focusing on finding better strategies to reuse enzymes and improve their performance. In this work, cellulase from Aspergillus niger was immobilised through in situ entrapment and adsorption on bio-inspired silica (BIS) supports. To the best of our knowledge, this green effect strategy has never been applied for cellulase into BIS. In situ entrapment was performed during support synthesis, applying a one-pot approach at mild conditions (room temperature, pH 7, and water solvent), while adsorption was performed after support formation. The loading efficiency was investigated on different immobilisation systems by Bradford assay and FTIR. Bovine serum albumin (BSA) was chosen as a control to optimize cellulase loading. The residual activity of cellulase was analysed by the dinitro salicylic acid (DNS) method. Activity of 90% was observed for the entrapped enzyme, while activity of ~55% was observed for the adsorbed enzyme. Moreover, the supported enzyme systems were recycled five times to evaluate their reuse potential. The thermal and pH stability tests suggested that both entrapment and adsorption strategies can increase enzyme activity. The results highlight that the entrapment in BIS is a potentially useful strategy to easily immobilise enzymes, while preserving their stability and recycle potential.

8.
J Gen Physiol ; 153(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34668926

RESUMEN

The myosin motors in resting skeletal muscle are folded back against their tails in the thick filament in a conformation that makes them unavailable for binding to actin. When muscles are activated, calcium binding to troponin leads to a rapid change in the structure of the actin-containing thin filaments that uncovers the myosin binding sites on actin. Almost as quickly, myosin motors leave the folded state and move away from the surface of the thick filament. To test whether motor unfolding is triggered by the availability of nearby actin binding sites, we measured changes in the x-ray reflections that report motor conformation when muscles are activated at longer sarcomere length, so that part of the thick filaments no longer overlaps with thin filaments. We found that the intensity of the M3 reflection from the axial repeat of the motors along the thick filaments declines almost linearly with increasing sarcomere length up to 2.8 µm, as expected if motors in the nonoverlap zone had left the folded state and become relatively disordered. In a recent article in JGP, Squire and Knupp challenged this interpretation of the data. We show here that their analysis is based on an incorrect assumption about how the interference subpeaks of the M3 reflection were reported in our previous paper. We extend previous models of mass distribution along the filaments to show that the sarcomere length dependence of the M3 reflection is consistent with <10% of no-overlap motors remaining in the folded conformation during active contraction, confirming our previous conclusion that unfolding of myosin motors on muscle activation is not due to the availability of local actin binding sites.


Asunto(s)
Actinas , Contracción Muscular , Citoesqueleto de Actina , Músculo Esquelético , Miosinas , Sarcómeros
9.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416833

RESUMEN

Contraction of skeletal muscle is regulated by structural changes in both actin-containing thin filaments and myosin-containing thick filaments, but myosin-based regulation is unlikely to be preserved after thick filament isolation, and its structural basis remains poorly characterized. Here, we describe the periodic features of the thick filament structure in situ by high-resolution small-angle x-ray diffraction and interference. We used both relaxed demembranated fibers and resting intact muscle preparations to assess whether thick filament regulation is preserved in demembranated fibers, which have been widely used for previous studies. We show that the thick filaments in both preparations exhibit two closely spaced axial periodicities, 43.1 nm and 45.5 nm, at near-physiological temperature. The shorter periodicity matches that of the myosin helix, and x-ray interference between the two arrays of myosin in the bipolar filament shows that all zones of the filament follow this periodicity. The 45.5-nm repeat has no helical component and originates from myosin layers closer to the filament midpoint associated with the titin super-repeat in that region. Cooling relaxed or resting muscle, which partially mimics the effects of calcium activation on thick filament structure, disrupts the helical order of the myosin motors, and they move out from the filament backbone. Compression of the filament lattice of demembranated fibers by 5% Dextran, which restores interfilament spacing to that in intact muscle, stabilizes the higher-temperature structure. The axial periodicity of the filament backbone increases on cooling, but in lattice-compressed fibers the periodicity of the myosin heads does not follow the extension of the backbone. Thick filament structure in lattice-compressed demembranated fibers at near-physiological temperature is similar to that in intact resting muscle, suggesting that the native structure of the thick filament is largely preserved after demembranation in these conditions, although not in the conditions used for most previous studies with this preparation.


Asunto(s)
Miosinas , Sarcómeros , Citoesqueleto de Actina , Animales , Contracción Muscular , Músculo Esquelético , Temperatura , Difracción de Rayos X
10.
J Physiol ; 599(6): 1815-1831, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33507554

RESUMEN

KEY POINTS: A nanomachine made of an ensemble of seven heavy-meromyosin (HMM) fragments of muscle myosin interacting with an actin filament is able to mimic the half-sarcomere generating steady force and constant-velocity shortening. To preserve Ca2+ as a free parameter, the Ca2+ -insensitive gelsolin fragment TL40 is used to attach the correctly oriented actin filament to the laser-trapped bead acting as a force transducer. The new method reveals that the performance of the nanomachine powered by myosin from frog hind-limb muscles depends on [Ca2+ ], an effect mediated by a Ca2+ -binding site in the regulatory light chain of HMM. The Ca2+ -sensitivity is class-specific because the performance of the nanomachine powered by mammalian skeletal muscle myosin is Ca2+ independent. A model simulation is able to interface the nanomachine performance with that of the muscle of origin and provides a molecular explanation of the functional diversity of muscles with different orthologue isoforms of myosin. ABSTRACT: An ensemble of seven heavy-meromyosin (HMM) fragments of myosin-II purified from the hindlimb muscles of the frog (Rana esculenta) is used to drive a synthetic nanomachine that pulls an actin filament in the absence of confounding effects of other sarcomeric proteins. In the present version of the nanomachine the +end of the actin filament is attached to the laser trapped bead via the Ca2+ -insensitive gelsolin fragment TL40, making [Ca2+ ] a free parameter. Frog myosin performance in 2 mm ATP is affected by Ca2+ : in 0.1 mm Ca2+ , the isometric steady force (F0 , 15.25 pN) is increased by 50% (P = 0.004) with respect to that in Ca2+ -free solution, the maximum shortening velocity (V0 , 4.6 µm s-1 ) is reduced by 27% (P = 0.46) and the maximum power (Pmax , 7.6 aW) is increased by 21% (P = 0.17). V0 reduction is not significant for the paucity of data at low force, although it is solidified by a similar decrease (33%, P < 0.0001) in the velocity of actin sliding as indicated by an in vitro motility assay (Vf ). The rate of ATP-hydrolysis in solution (φ) exhibits a similar calcium dependence. Ca2+ titration curves for Vf and φ give Kd values of ∼30 µm. All the above mechanical and kinetic parameters are independent of Ca2+ when HMM from rabbit psoas myosin is used, indicating that the Ca2+ -sensitivity is a class-specific property of muscle myosin. A unique multiscale model allows interfacing of the nanomachine performance to that of the muscle of origin and identifies the kinetic steps responsible for the Ca2+ -sensitivity of frog myosin.


Asunto(s)
Contracción Muscular , Miosinas , Actinas , Animales , Músculo Esquelético , Miosina Tipo II , Isoformas de Proteínas , Conejos
11.
Int J Mol Sci ; 21(19)2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036217

RESUMEN

The emergent properties of the array arrangement of the molecular motor myosin II in the sarcomere of the striated muscle, the generation of steady force and shortening, can be studied in vitro with a synthetic nanomachine made of an ensemble of eight heavy-meromyosin (HMM) fragments of myosin from rabbit psoas muscle, carried on a piezoelectric nanopositioner and brought to interact with a properly oriented actin filament attached via gelsolin (a Ca2+-regulated actin binding protein) to a bead trapped by dual laser optical tweezers. However, the application of the original version of the nanomachine to investigate the Ca2+-dependent regulation mechanisms of the other sarcomeric (regulatory or cytoskeleton) proteins, adding them one at a time, was prevented by the impossibility to preserve [Ca2+] as a free parameter. Here, the nanomachine is implemented by assembling the bead-attached actin filament with the Ca2+-insensitive gelsolin fragment TL40. The performance of the nanomachine is determined both in the absence and in the presence of Ca2+ (0.1 mM, the concentration required for actin attachment to the bead with gelsolin). The nanomachine exhibits a maximum power output of 5.4 aW, independently of [Ca2+], opening the possibility for future studies of the Ca2+-dependent function/dysfunction of regulatory and cytoskeletal proteins.


Asunto(s)
Calcio/metabolismo , Contracción Muscular , Miosina Tipo II/metabolismo , Nanoestructuras/química , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Animales , Gelsolina/metabolismo , Gelsolina/fisiología , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Miosina Tipo II/fisiología , Conejos
12.
Nat Commun ; 11(1): 3405, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636378

RESUMEN

Omecamtiv mecarbil (OM) is a putative positive inotropic tool for treatment of systolic heart dysfunction, based on the finding that in vivo it increases the ejection fraction and in vitro it prolongs the actin-bond life time of the cardiac and slow-skeletal muscle isoforms of myosin. OM action in situ, however, is still poorly understood as the enhanced Ca2+-sensitivity of the myofilaments is at odds with the reduction of force and rate of force development observed at saturating Ca2+. Here we show, by combining fast sarcomere-level mechanics and ATPase measurements in single slow demembranated fibres from rabbit soleus, that the depressant effect of OM on the force per attached motor is reversed, without effect on the ATPase rate, by physiological concentrations of inorganic phosphate (Pi) (1-10 mM). This mechanism could underpin an energetically efficient reduction of systolic tension cost in OM-treated patients, whenever [Pi] increases with heart-beat frequency.


Asunto(s)
Miosinas Cardíacas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miosinas/metabolismo , Fosfatos/farmacología , Urea/análogos & derivados , Adenosina Trifosfatasas/metabolismo , Animales , Calcio/metabolismo , Sinergismo Farmacológico , Masculino , Músculo Esquelético/metabolismo , Conejos , Sarcómeros/metabolismo , Estrés Mecánico , Urea/farmacología
13.
Biophys J ; 118(5): 994-1002, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-31968230

RESUMEN

In a contracting muscle, myosin cross-bridges extending from thick filaments pull the interdigitating thin (actin-containing) filaments during cyclical ATP-driven interactions toward the center of the sarcomere, the structural unit of striated muscle. Cross-bridge attachments in the sarcomere have been reported to exhibit a similar stiffness under both positive and negative forces. However, in vitro measurements on filaments with a sparse complement of heads detected a decrease of the cross-bridge stiffness at negative forces attributed to the buckling of the subfragment 2 tail portion. Here, we review some old and new data that confirm that cross-bridge stiffness is nearly linear in the muscle filament lattice. The implications of high myosin stiffness at positive and negative strains are considered in muscle fibers and in nonmuscle intracellular cargo transport.


Asunto(s)
Contracción Muscular , Miosinas , Actinas , Elasticidad , Sarcómeros
14.
J Physiol ; 598(2): 331-345, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786814

RESUMEN

KEY POINTS: Fast sarcomere-level mechanics in contracting intact fibres from frog skeletal muscle reveal an I-band spring with an undamped stiffness 100 times larger than the known static stiffness. This undamped stiffness remains constant in the range of sarcomere length 2.7-3.1 µm, showing the ability of the I-band spring to adapt its length to the width of the I-band. The stiffness and tunability of the I-band spring implicate titin as a force contributor that, during contraction, allows weaker half-sarcomeres to equilibrate with in-series stronger half-sarcomeres, preventing the development of sarcomere length inhomogeneity. This work opens new possibilities for the detailed in situ description of the structural-functional basis of muscle dysfunctions related to mutations or site-directed mutagenesis in titin that alter the I-band stiffness. ABSTRACT: Force and shortening in the muscle sarcomere are due to myosin motors from thick filaments pulling nearby actin filaments toward the sarcomere centre. Thousands of serially linked sarcomeres in muscle make the shortening (and the shortening speed) macroscopic, while the intrinsic instability of in-series force generators is likely prevented by the cytoskeletal protein titin that connects the thick filament with the sarcomere end, working as an I-band spring that accounts for the rise of passive force with sarcomere length (SL). However, current estimates of titin stiffness, deduced from the passive force-SL relation and single molecule mechanics, are much smaller than what is required to avoid the development of large inhomogeneities among sarcomeres. In this work, using 4 kHz stiffness measurements on a population of sarcomeres selected along an intact fibre isolated from frog skeletal muscle contracting at different SLs (temperature 4°C), we measure the undamped stiffness of an I-band spring that at SL > 2.7 µm attains a maximum constant value of ∼6 pN nm-1 per half-thick filament, two orders of magnitude larger than expected from titin-related passive force. We conclude that a titin-like dynamic spring in the I-band, made by an undamped elastic element in-series with damped elastic elements, adapts its length to the SL with kinetics that provide force balancing among serially linked sarcomeres during contraction. In this way, the I-band spring plays a fundamental role in preventing the development of SL inhomogeneity.


Asunto(s)
Conectina/fisiología , Contracción Muscular , Músculo Esquelético/fisiología , Sarcómeros/fisiología , Animales , Anuros , Técnicas In Vitro
15.
J Gen Physiol ; 151(11): 1272-1286, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31554652

RESUMEN

Myosin motors in the thick filament of resting striated (skeletal and cardiac) muscle are trapped in an OFF state, in which the motors are packed in helical tracks on the filament surface, inhibiting their interactions with actin and utilization of ATP. To investigate the structural changes induced in the thick filament of mammalian skeletal muscle by changes in temperature, we collected x-ray diffraction patterns from the fast skeletal muscle extensor digitorum longus of the mouse in the temperature range from near physiological (35°C) to 10°C, in which the maximal isometric force (T 0) shows a threefold decrease. In resting muscle, x-ray reflections signaling the OFF state of the thick filament indicate that cooling produces a progressive disruption of the OFF state with motors moving away from the ordered helical tracks on the surface of the thick filament. We find that the number of myosin motors in the OFF state at 10°C is half of that at 35°C. At T 0, changes in the x-ray signals that report the fraction and conformation of actin-attached motors can be explained if the threefold decrease in force associated with lowering temperature is due not only to a decrease in the force-generating transition in the actin-attached motors but also to a twofold decrease in the number of such motors. Thus, lowering the temperature reduces to the same extent the fraction of motors in the OFF state at rest and the fraction of motors attached to actin at T 0, suggesting that motors that leave the OFF state accumulate in a disordered refractory state that makes them unavailable for interaction with actin upon stimulation. This regulatory effect of temperature on the thick filament of mammalian skeletal muscle could represent an energetically convenient mechanism for hibernating animals.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Miosinas/fisiología , Animales , Frío , Masculino , Ratones , Difracción de Rayos X
17.
J Gen Physiol ; 151(1): 53-65, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30510036

RESUMEN

When striated (skeletal and cardiac) muscle is in its relaxed state, myosin motors are packed in helical tracks on the surface of the thick filament, folded toward the center of the sarcomere, and unable to bind actin or hydrolyze ATP (OFF state). This raises the question of whatthe mechanism is that integrates the Ca2+-dependent thin filament activation, making myosin heads available for interaction with actin. Here we test the interdependency of the thin and thick filament regulatory mechanisms in intact trabeculae from the rat heart. We record the x-ray diffraction signals that mark the state of the thick filament during inotropic interventions (increase in sarcomere length from 1.95 to 2.25 µm and addition of 10-7 M isoprenaline), which potentiate the twitch force developed by an electrically paced trabecula by up to twofold. During diastole, none of the signals related to the OFF state of the thick filament are significantly affected by these interventions, except the intensity of both myosin-binding protein C- and troponin-related meridional reflections, which reduce by 20% in the presence of isoprenaline. These results indicate that recruitment of myosin motors from their OFF state occurs independently and downstream from thin filament activation. This is in agreement with the recently discovered mechanism based on thick filament mechanosensing in which the number of motors available for interaction with actin rapidly adapts to the stress on the thick filament and thus to the loading conditions of the contraction. The gain of this positive feedback may be modulated by both sarcomere length and the degree of phosphorylation of myosin-binding protein C.


Asunto(s)
Diástole/fisiología , Miocardio/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Animales , Calcio/metabolismo , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Fosforilación/fisiología , Ratas , Ratas Wistar , Sarcómeros/metabolismo
18.
Nat Commun ; 9(1): 3532, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30166542

RESUMEN

The contraction of striated muscle (skeletal and cardiac muscle) is generated by ATP-dependent interactions between the molecular motor myosin II and the actin filament. The myosin motors are mechanically coupled along the thick filament in a geometry not achievable by single-molecule experiments. Here we show that a synthetic one-dimensional nanomachine, comprising fewer than ten myosin II dimers purified from rabbit psoas, performs isometric and isotonic contractions at 2 mM ATP, delivering a maximum power of 5 aW. The results are explained with a kinetic model fitted to the performance of mammalian skeletal muscle, showing that the condition for the motor coordination that maximises the efficiency in striated muscle is a minimum of 32 myosin heads sharing a common mechanical ground. The nanomachine offers a powerful tool for investigating muscle contractile-protein physiology, pathology and pharmacology without the potentially disturbing effects of the cytoskeletal-and regulatory-protein environment.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Estriado/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiología , Adenosina Trifosfato/metabolismo , Animales , Cinética , Masculino , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Estriado/fisiología , Conejos
19.
Front Physiol ; 9: 736, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962967

RESUMEN

A dual regulation of contraction operates in both skeletal and cardiac muscles. The first mechanism, based on Ca2+-dependent structural changes of the regulatory proteins in the thin filament, makes the actin sites available for binding of the myosin motors. The second recruits the myosin heads from the OFF state, in which they are unable to split ATP and bind to actin, in relation to the force during contraction. Comparison of the relevant X-ray diffraction signals marking the state of the thick filament demonstrates that the force feedback that controls the regulatory state of the thick filament works in the same way in skeletal as in cardiac muscles: even if in an isometric tetanus of skeletal muscle force is under the control of the firing frequency of the motor unit, while in a heartbeat force is controlled by the afterload, the stress-sensor switching the motors ON plays the same role in adapting the energetic cost of the contraction to the force. A new aspect of the Frank-Starling law of the heart emerges: independent of the diastolic filling of the ventricle, the number of myosin motors switched ON during systole, and thus the energetic cost of contraction, are tuned to the arterial pressure. Deterioration of the thick-filament regulation mechanism may explain the hyper-contractility related to hypertrophic cardiomyopathy, an inherited heart disease that in 40% of cases is due to mutations in cardiac myosin.

20.
J Physiol ; 596(13): 2581-2596, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29714038

RESUMEN

KEY POINTS: Fast sarcomere-level mechanics in intact trabeculae, which allows the definition of the mechano-kinetic properties of cardiac myosin in situ, is a fundamental tool not only for understanding the molecular mechanisms of heart performance and regulation, but also for investigating the mechanisms of the cardiomyopathy-causing mutations in the myosin and testing small molecules for therapeutic interventions. The approach has been applied to measure the stiffness and force of the myosin motor and the fraction of motors attached during isometric twitches of electrically paced trabeculae under different extracellular Ca2+ concentrations. Although the average force of the cardiac myosin motor (∼6 pN) is similar to that of the fast myosin isoform of skeletal muscle, the stiffness (1.07 pN nm-1 ) is 2- to 3-fold smaller. The increase in the twitch force developed in the presence of larger extracellular Ca2+ concentrations is fully accounted for by a proportional increase in the number of attached motors. ABSTRACT: The mechano-kinetic properties of the cardiac myosin were studied in situ, in trabeculae dissected from the right ventricle of the rat heart, by measuring the stiffness of the half-sarcomere both at the twitch force peak (Tp ) of an electrically paced intact trabecula at different extracellular Ca2+ concentrations ([Ca2+ ]o ), and in the same trabecula after skinning and induction of rigor. Taking into account the contribution of filament compliance to half-sarcomere compliance and the lattice geometry, we found that the stiffness of the cardiac myosin motor is 1.07 ± 0.09 pN nm-1 , which is slightly larger than that of the slow myosin isoform of skeletal muscle (0.6-0.8 pN nm-1 ) and 2- to 3-fold smaller than that of the fast skeletal muscle isoform. The increase in Tp from 61 ± 4 kPa to 93 ± 9 kPa, induced by raising [Ca2+ ]o from 1 to 2.5 mm at sarcomere length ∼2.2 µm, is accompanied by an increase of the half-sarcomere stiffness that is explained by an increase of the fraction of actin-attached motors from 0.08 ± 0.01 to 0.12 ± 0.02, proportional to Tp . Consequently, each myosin motor bears an average force of 6.14 ± 0.52 pN independently of Tp and [Ca2+ ]o . The application of fast sarcomere-level mechanics to intact trabeculae to define the mechano-kinetic properties of the cardiac myosin in situ represents a powerful tool for investigating cardiomyopathy-causing mutations in the myosin motor and testing specific therapeutic interventions.


Asunto(s)
Calcio/metabolismo , Espacio Extracelular/metabolismo , Contracción Muscular , Fibras Musculares Esqueléticas/fisiología , Miosinas/fisiología , Animales , Masculino , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...